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AN IMPLEICLT SYSTEM FOR CALCULATION OF FLOW OF A VISCOQUS,
HEAT-CONDUCTING GAS

Yu.A. Berezin, V.M. Kovenya, and N.N. Yanenko
Computation Center, Siberilan Sector, USSR Academy of Sciences,
Novosibirsk

A sufflclently detalleq stﬁdy‘of the problem of supersonic /3%
fIOWfaPoﬁnd a, body\must be haged on use of a complete system of
equations of a viscous, compressible, heat-conducting gas. In
view of the complexity of these equations, it is impossible to
obtain analytical results at the present time, which leads to the
necegsity for use of numerical méthcds, which have been worked
out intensively over a number of years [1-10].

The explicit schemes examined in [1, 2, 4-6] possess
arbitrary stablllity and, there aré severe limitations for them &n
time spacing t (or the iteration parameter, in the case of
equilibrium problems), at medium and small Reynolds numbers.

The scheme presented in [7] removes the limitation on spacing T,
connected with viscosity, but the limitations connected with
the normal Kurant condition for gas dynamics without viscosity
remain. In this sense, the scheme is intermediate between
explicityandlimplicit ones.

In solutlon of equidibrium problems, it is important to have
an absolutely stable scheme, free of limitations on the iteration
parameter. One possible iImplicit, absolutely stable scheme of
the first order of accuracy, with complete approximation, is
congtructed In our work. |

L. Formulation of the Broblem e

A systém'of eQuations'déécrihing the'flow of a viscous,
compressible heatvconductlng gas haﬁ~the fqllowing Form: -

--------------------------

T

*NUmberS\in the margln lndicate pag;natlon in the forelgn text
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The following designations were used here: x, y are the /5

cartestan coordinates; t Is time; u, v are the projections of
the ve‘lo‘cityvecth? on the x, y axes; p, € are the density and
internal energy; u 25 the coefficient of dynamic viscesity,
v =0 /’C is the ratlo of the heat capaclty; Pr is the Prandtl
numher, Re 1s the Reynolds number.. System (AJ~(31 1s written
In dimensionless varlables:
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(the dashes concern dimensional quantities and subscript 0, to
values In the Incoming flowi;‘aﬂ_are the heat conductivity
coeffictents, L is the length of the body, Ug is the speed of
the incoming flow.

The gas pressure p 1s excluded from systems (1]-(31, by
means of the equation of staté p = {y - Lipe. It 1s assumed
that the coefficlents of viscoslily ﬁ and heat conductivity A
are exponential functions of the internal energy (Cp, Cv = const).

Conditions of adhesion and heat lInsulation are placed on
the surface of the body:

Zale O
JE o (4)

7

To find the staticnary solution of the problem of flow-around

(Q*ﬁ)f?:: a,. (5)

the steady state establishment methed is used.

2. Difference Scheme

We Introduce fnto cylinder Dy =D % H (D is the rectangular
region, in which a numerlcal solution is sought, H=[Q, T]
r =G x H iz the boundary) a difference grid with ccefficlents:
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Here, 1 1s the iteratlon parameter, hy (&) and h,(k) are the
8rid spaclngs on the x and y coordinates. ‘We Introduce the .
network.functlon,ﬂg,,,”,gf,;ﬁ)l and difference operators @ °,
Ah, approximating the Initial differential matrix operators, with /6
fIrst or second order accuracy. The difference operator of the
boundary\conditions‘lh‘approximates (4), with second order
accuracy. In accordance with differential problem (4), (5), w
set up thé'drfferencé problém:

In cylinder DH’ to find thé,sqlution of equation

#.

A A
@uh)r- o | (6)
wlth boundary conditions
7 =) (")

For solutien of difference problem (6) by the establishment,
method, the following implicit separation scheme is assumed:
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where - gt pege,54)| 1s an auxiliary vector.
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Elim;nat;on of rpactgpnal steps gives a universal algorithm
scheme [11], hav1ng the property of complete approximation:
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Différence'SChﬁmeﬂCﬁI;permitﬁ'labq$tgu§rmatniiftnial$ to be
avorded. A similap separatlon scheme,. but not having complete

y



approximation, was. e.:xa,mi‘né.d’ In [12].

WE examing the stabllity of a linearized scheme corresponding
to scheme (9Y, by the Fourler method, at T = T Selecting the
solutlton in the form L . We Obta;n the following (?.
characteristlc equation: : B

; Lo 1B (21 ) (i (1-1)ea JolT-Den i (1)
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At suffilclently large values of internal energy e, which
corresponds to regions hehind strong shock waves (in hypersonic
flows), Eq. (10) takes the form:

-l (et Jl et gllr s fo-s)or b o190 l (10a)
In the absence of viscosity (ry = 01, the root of (l0a) equals:

@\
A=l Ayt is  A=TE (11}

_ . e g L
and, in the case of low veloeitles 4=4 %4=7"%;]
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At small Values of the lnternal energy e (regions of high
rarefacblonl, the characteristic equation

_@_f'?"?""%:][f/ﬂ?'f)*@/ f/:j, R-1)+ ), ]=¢7] (8
has the roots
3= - j’o, z,—/— | .z,,=/--;“ff, (13)

It follows from formulas (11}-(13) that » = max || < 1,
i.e., there Is abscolute stability in the limiting cases of
scheme (9) examined. It can be éxpécted that, in the general
case, the scheme wIll be stable. Of course, the linear analysis
carrled out Is not sufficlent; therefore, a test is necessary,
by means of systematle calculations. Such a test was carried out,
and it turned out that the scheme is stable, at least up to
Kurant number K < 10, where

o \
# ’5‘; (& Lo/ #, )+ - maz (B, 4, ).

The proposed difference scheme can be used for calculation
of axisymmetric flows.

3.  Examples of Numeprical Calculations

1] Flow ayound a wedge. Calculations were carried out
of a plane Flow of g vigcous, compressible, hea.t—conductmg gas
around 3 wedge of length L along the x axls, at an avbitrary
angle of attack. Condltlons-tyi were placed on the surface of
the body, and the density was determined from the contlnulty
equation, wmth.second order accuracy. VlSCOsity u was determlned
by the formula ﬁ =_Ch/eql , w = Q.759.

6
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reglion were selected,

Y
T T ) | so that conditions

corresponding to unperturbéd flow could be placed on them: /9
&= z.fzm:;, a):- 4 sing; Jo../ -é;irﬁ#_": (14}

where 8 ts the angle of attack. It turned.out that It is suf-
ficlent to select a distance from thé wedge to the front boundary
of the region on the ordér of L and, to the upper and lower
boundaries, 3-5L. The rear boundary of the region was removed

to a distance X - 5-15E from the bottom of the wedge and boundary
conditionﬁaEﬁal = 0, where 1 is the direction of the incoming
flow, were set on 1t. ' Comparisou off numerical -solutions 'in-
section x = 5L, at X = 7L and X = 12L, shows that their difference
is.not over.1%.

The spacingse«of the adjusted difference network along the
X axis from zero to a were selected to be uniform and equal to
hy = ﬁhl = 1/m (m is the number of points on the wedge); at
x > a, nonuniform spacing was selected by formula h; = hy 4 +
+ ahl. The spacing along the y axls in the vicinlty of the wedge
was assigned by the formula hK = &hz =_&hltan¢ and, in the remain-
ing part of the reglon, by the formula hy = Dp i .+ 4h,. The
caleulatlon region contained 56 y points and 40 x polnts, i.e.,
2360 points in all; the number of points on the body m = 1Q.
As initlal data Qver the entire regLQn, except the boundaries of
the body, Gondlt;9n§ (L4Y were aSSLgned\ The numerlcal calcula-
tlensg were carried out at different yalues of the Iberation
parameter T = Q.0Q3,. 0,05, 0.1, 0.2 and 0.3, whlch\correspond to
Kupant numbers K = 0,5-8,5. Comparison of the steady numerlcal
soluttons on the surface of the bddieS‘fdr different © and &h
has shown that, with change in Tgicoincidencé'of the Valﬁés’of



the functilong sqQught occurred to the third decimal place (i.e.,
the'steadymsoluﬁign ddea‘not dépend on ri.and? with a 60%
decréase inAgFid spacing, the differences were not over 5-6%.
The -establighmentcritériQn was satisfaction of the condition

(15)

'/PP-Q-Z'I';'TJO‘-SJ:
where & = 10'3 over the entire calculation region.

The results of calculatlon of flow around a wedge at zero
angle of attack, with y = 1.4, Pr = 0.72, are presented in
Table 1 and in Graphs 1-3.

TABLE 1.
i
C{Ae 1100 250 500 |I000 | 100 250 500
tang [0.3 0.3 6.3 | 0.5 |0.3 0.3 N
REAE 0.36 | 0.65 | G.9 - 0.1 |0.36
€ [0.606 [ 0.59I | 0.550 | 0.482 [ 0.368 | 0.310] 0.264
P 10.410 [ 0.476 | 0.59T | 0.601 | 0.273 | 0.427] 0.5I9

Here, EO is the rear critical point (boundary of the return flow

zone on the axis of symmetry y = 0), € and p are the internal
energy and denslty at the bottom of the wedge, at y = 0 and M,
Re are the Mach and Reynolds numbers of an unperturbed flow.

The change in Xgs @8 & functlon of the M and Re numbers, coincides

qualitatlyely with ealeulatlons 5],

£
250

1202 _
on the axis y = Q, is
g J . glven In Fig, L, at

Fig; l; ' 1QQUI,'fqr the case

122 . The distribution of
572 X, the velocity components

. Yarious Re numbers (100-



M= 2.0, ¢ = 16,62, An Increase In Reynolds number leads to an
Incregse In the retuyn flow~region. We make an estimate of the
calculated vlsc@s1ty in the track next to the body. The physica
viscosity Yy T uﬂReP directly beyond the bottom shear, is on the
order of NQ 02 (&t p & 0.5, w ¥ 1. 5 Re % 100~300), and the cal-
culated, determined by formula Vop ¥ [u |4 is on the order of
80, 001=0. Q02 y = 0.1, Jugl & 0.03- o 1, i 1, 2). In this
manner, the calculated viscosity 1s,cons;derably less than the
physical in thé near track.

2 ’ J& Distribution of the gas
: density at the bottom of the
03t ) wedge 1s presented 1in Fig. 2,
;:ﬁF 08 ¥ at various Re and M = 2, ¢ =
’ s a5 | = 16.6°. At the points closest
Flg. 2. 7 ' to the corner, a drop in density

_ takes place, to a value close to
zero. With increase in Re, this zone decreased and, at Re = 100
it degenerated into a single point. This feature of the flow
was noted earlier in [5]. A decrease in density is observed
along the generatrix of the wedge, from values 1in the vieinity
of the tip close to a normal shock to almost unperturbed values.
The internal energy along the generatrix is nearly a constant,
which decreases with increase in Re. The curves of the x com-
ponents of the velocity at various distances from the bottom of
the wedge aleng the axls of symmetry are given in Fig. 3, at .

= 108, M = 2, $ = . 16, 6. The calculatlons showithat an
assoc1ated shock wave forms ahead of the wedge (Fig. 4). With
Increase In Re number (> 2501, the Velqglty distribution in
the shock wave 1s almogt unchanged, which apparently can he
explained by the effect of the calculated viscosity. For a more
detailed explanatlan of the nature of the flow In the v;cinity

1

[l

0,

of the tip, galculatiqns according tO schemes of a high order of

accuracy, are necesgary.

}—l
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‘length\L
&= Ahz, at varlous angles of attack.:

Calculatlons of flow
around a wedge-at a nonzero
angle of attack were carried
out (g = 11.5%; M = 2-3;

Re = 100, 500, 1000; ¢ = 16.6°,
29%). Curves of the distribu-
tlon of internal energy and

of the x component of the

. velocity at various distances
- from the wedge are presented

in Figs. 5 and 6 (M =_2,‘Re =
= 500, ¢ = 16.6°), It is
evident from Fig. 5 that the
vortex axis 1s located along
the dlrection of the ilncoming
flow.
for example, [13]), there is

a fan of rarefaction waves

As is well-known, (see,

beyond the body around which
the flow takes place. A zone
of reduced internal energy is
seen well in Fig. 6, which
corresponds Lo these rare-

A similar
phenomenon was noted in our

¢alculations of flow around a

facttion waves.

A2

wedge at a zero angle of attack.

2). Flow around g plate.
Caleulations were carried out
of flow around applate, of
-1 and thickness
$hﬁ calculation reglon

and grid spaclng were selected just as in the case of the wedgé.

10
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y & & a2 of 88 28 11

, #=2 Typical caleculations were
61 Be= : . :
flg?. carried out at v = 0.1-0.2,
“:::ﬂ‘pﬂi . , | &h, = 0.1 and &h, = 0.03.
F \ | .

. y o : ‘ . To accelerate the convergernce,
' 02 75 73| 07 a5 2af z - .
| ‘ 1 A B Y the steady solution at smaller

o] S0 00 Reynolds numbers was taken as
-ﬁﬁ‘” s =

the initial conditions, which

* Fig. 6. led to approximately a 30%
decrease In number of I1terations.

. The flow was considered to be

steady upon satisfying.conditionsr(iSI. The parameters of the

calculated versions are presented In Table 2.

TABLE 2.

A 2 2 2 2 2 3 3 3 \
A e 100 | 200 | 400 | 500 | 1000| 100 | 200 | 400
fagle | 5l g o | o e| o o 0
attack
| in °
|
' s 5 10| 2 2 3 2 2 2

200 | 400 | 200 | 200 | 1000 | 200] 400 [2000 | 400C

0 0 0 23 | 23 |11.5| 34.5] 23 23

In calculations of flow arcund & plabe at a zero angle of
attack, the formation of a boundary layer was studied, as a
function of the Mach and Reynolds numbers. It Lls known (see,
for example [13]), that the thickness of the boundary layer in
flow arcund a body by an Incomprégsihle fluld is determined by
the formula & % Re }wa, with a proporticnality coefficlient on
the ordey of unity, In the case of a compressible gas, as
the'daleulationa-shDW3'a qyalitatiVe dependence of ﬁhicknéss
§ on Reynolds number s preserved (Fig. 71, but the value of
& Is greater; thls Increase In thickness § 1s determined by the
interaction of the thermal and boundary layers [13]. A -

& 11



characteristic feature of the flow is thickening of the boundary
layer on the front part of the plate, where fusion of It with

the asﬁociatédigﬁgakkwaveﬁtakes~place; The‘increasé'in boundary
layer thickness with Increase in Mach number noted in [13]1° /1h

attractsattention (Fig. 8).

¥

decreasés*uithﬁxncreaae”ﬁn Reyne

iz

At M = 10, the
- velocity profile in the
zone of the developed
boundary layer Is close
to linear. Distribution
aof density on the plate

Fig. 8.

depends slightly on Re
number. A decrease in
density is observed along
the plate, to values less
than in unperturbed flow (p % 0.75p0s
M =2). In the front section of
the plate, a sharp increase in
density is observed, which is con-
nected with shock wave formation.
The distribution 6f internal energy
along the plate is almost linear;
there 1s a discontinuity in 1it,
connected with increase in entropy
in the transitlon through the
shoek wave (fhe so-called entropy
tayerl, enly In the vicinity of
the orlgin of the plate. The
Increase In Interfial energy in

the plate over the energy in the
Inceming flow 1s small, and it

1ds number.



The. local and total réSistancé5fact0rs‘of the plate were
computed in the calculations, by the following formulas:

J'zvf_ iy._..l

F Fe Fy ¥=2, "61

=E_  du i - 4
I 75

A comparison of thé COéfficients,of,frictional resistance of the
plate, calculated by formula (16} and by the empirical formula
of Junge [13] s made in Table 3:
P @-f
=ﬁz-£&ﬂ%%§jﬁﬁ?VWyﬂfjf‘

oot o an

The Increase in divergence of the calculated resistance factor
from that determined by formula (17} can be explained by the

fact that formula (17) holds true for a boundary layer, not
distorted by the effect of the shock wave. In our calculations,
there: always 1s an Iinteraction of the boundary layer with the
assoclated shock wave, which leads to some change in the velocity
profiile next to the body. Moreover, with increase in Re number,
the relative effect of the calculated viscosity lncreases, leading
to errors in calculation of the resistance factor. As in flow
around a wedge, there is a curvature of the shock wave in these
calculations, in the front part of the plate, because of the
viscous iInteraction. The(sl@pe of the shock wave downstream
approximates 1its slope In a nonvigcous_gas (for M = 2, Re = 50Q,
the shock\wave,giqpé'angle'in g, non?iscous_gas is-&309, but the
calculatiqn_gtvealﬂ32?1. |

13



TABLE 3. RESISTANCE FACTOR OF PLATE (w =0.75).

ol CaIEuIEted Theggfti— d;“ 4

? Resi Yo

Resistance Resistance="k 4/ (G )

21 IC0| U.1366 . 1525 0,0038 2.86
2200 0.0926 0.0840 | -0.00I4 -1.5 }
214001 0.08I8 C,0664 -0.0046 -6.93
31100 0.1401 3, 1328 -0.0073 -5.5
3|200( 0.0940 1).0940 -D.0036 -3.84
314000 0.0601 0.0661 -D.C060 -9,05

Calculatfons also were madé'of flow around a plate at a
nonzero angle of gttack. The internal energy and density on the
upwind side is considerably greater than on the downwind (Fig. /16
9). There is a rarefaction zone on the downwind side, In which
the veloclity x component profiles are close to linear; the stream
is displaced in the direction of - flow (Fig. 10). At angle
of attack 8 = 0.4, calculations were carried out at Reynolds
numbers Re = 1000, 2000 and 4000, M = 2. It was assumed that, at
large Re numbers, vortex formation will occur. The calculations
showed that, at Re = 1000, a change in s e t. of the velocity
arises at one point above the end of the plate; however, further /17
inerease in Reynolds number did not lead to the appearance of
vortexes. In flow around a plate, stagnant zones dé not form;
therefore, the velocity of the flow and, of course, the calculated
viscoslty iIn the vicinity of the plate 1s quite high, which
apparently can explain the ahsence of vortexes.s. A test was made
of satisfactlion of the laws of conservation of mass and total
energy, to check the accuracy of the calculations. The error in
conservation of mass was not over 1.5% and of energy, C.3%.

14
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In typical calcula-
tlons, the number of
iteratilons to steady
flow is ~200-250 for
the wedge and 150 for
the plate, and the
time of calculation of
gne version on the
BESM-6 computer is
16-25 minutes.

1. An implicity
difference scheme of
separation of first
order accuracy by direc-
tional variables. having
complete.,. . apprdxima-
tion, was constructed
for a system of equations
descrlibling plane Tlow
of a viscous, compres-—
sible, heaft-conducting.
gas.

2. The absolute stability of this scheme in the limiting
cases was demonstrated by the Fqurier.methqd.

3. Systematic calqﬁlaﬁi@ns~shgwéd that the scheme is
stable at least yp to Kyrant number K = 1Q.

4. Stead.lﬁ ;f;lQW‘ ﬁp.';zto: g = qu-3 Cs, = IUELX[%%I) takes pl.acé

in 150-300 Dterattons.
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5 Thel&GthE permits calculations to be carried out
under arbifwsrily asslgned initlal conditilons.

6. A picture was obtained of flow around a wedge and a

plate at varltous angles of attack (associated shock wave, vortex
zone and rarvefaction zone].
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